亚洲美女爱爱-夜夜添夜夜添夜夜摸夜夜摸-97碰成人国产免费公开视频-国产午夜大片-www黄av-国产94在线 | 亚洲-亚洲午夜久久久精品一区二区三剧-精品视频亚洲-久久久久国色av∨免费看-黄色片一区二区-69福利视频-国产老头和老头xxxxx免费-99精品视频一区在线观看-日韩三级黄色毛片-亚洲激情图片区-黄色a一级-99re6在线-91九色视频-日本欧美久久久-成人国产精品免费观看

你的位置:首頁 > 測試測量 > 正文

PAM-4印刷電路板最佳實踐

發布時間:2017-08-07 來源:Chang Fei Yee 責任編輯:wenwei

【導讀】本設計實例討論了工程師在設計PCB上的PAM-4PHY 通道時應遵循的關鍵實踐。實現50Gbps PAM-4 PHY鏈路時必須嚴格要求,確保在高速收發器之間實現穩定的通信。
 
隨著物聯網(IoT)和5G移動寬帶應用的興起,預計總體數據流量將會迅猛增長,400千兆以太網(400GbE)作為新一代有線通信標準,能夠有力支持這一趨勢。在400GbE通信的實施中,其電氣接口在8通道上傳輸4電平脈沖幅度調制(PAM-4)信令。每通道50Gbps,總共8個通道結合起來,使以太網的總帶寬可以達到400Gbps。IEEE802.3bs定義了使用50Gbps(即25GBaud)PAM-4信令的400GbE的電氣規范。
 
PAM-4具有4種數字幅度電平,如圖1所示。與NRZ相比,PAM-4的優勢是每個電平或符碼都包含兩個信息比特,在相同的波特率下,吞吐量是NRZ的兩倍。
 
PAM-4印刷電路板最佳實踐
圖1:NRZ與PAM-4的對比。在相同的波特率下,PAM-4的吞吐量是NRZ的兩倍。
 
考慮電源完整性的關鍵設計實現
 
一旦PDN上的開關噪聲耦合至收發器集成電路的電源層,傳輸信號中將感應到抖動,這可能會增加接收集成電路中的比特誤碼率。為了讓噪聲紋波保持在較小水平,符合設計規范,PDN阻抗應低于目標阻抗。目標阻抗由公式1決定。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
為了最大限度降低PDN阻抗,要特別關注去耦電容、互連電感和電源平面電容等印刷電路板元件。去耦電容應安裝在靠近高速收發器電源引腳的位置,以減少PDN阻抗,進而在噪聲耦合進收發器集成電路封裝電源平面之前,減小來自外部源(如穩壓器和其它開關集成電路)的噪聲。高速收發器電源引腳的噪聲將低于10mVpp。為Xilinx FPGA上的高速收發器電源引腳推薦的最小電容數量如圖2所示,在靠近每個高速收發器電源組(即MGTAVCC、MGTAVTT和MGTVCCAUX)的位置都安裝了1個4.7uF陶瓷電容器。
 
PAM-4印刷電路板最佳實踐
圖2:為Xilinx FPGA上的高速收發器電源引腳推薦的電容數量。
 
當互連電感減少時,PDN阻抗會相應降低。互連電感主要由走線(連接電容器的貼裝焊盤與過孔)的寄生電感引起。根據圖3所示的印刷電路板的剖面圖,每個互連回路(圖中標示為回路1、2、3)中都會形成互連電感。去耦電容器要盡量安裝在靠近集成電路電源引腳的位置,以最大限度減小互連電感。
 
PAM-4印刷電路板最佳實踐
圖3:印刷電路板內的互連電感。
 
當印刷電路板疊層中的電源平面和接地面之間形成的平面電容增加時,PDN阻抗會降低。參見圖4所示的平面電容基礎模型和公式2,通過減少平行面之間的厚度,增加電源平面與接地面之間并行面的面積,或使用具有較大介電常數的基片,電容會相應升高。
 
PAM-4印刷電路板最佳實踐
圖4:印刷電路板疊層中的平面電容基礎模型。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
考慮信號完整性的關鍵設計實現
 
根據指南,印刷電路板上走線長度達到8英寸的PAM-4通道在14GHz和28GHz分別具有低于10dB和20dB的插入損耗,從而在收發器之間實現無縫數據通信。下面我們將從信號完整性的視角討論7個關鍵設計實踐。
 
1.為印刷電路板基片選擇低損耗材料
 
根據介電特性(例如損耗正切和介電損耗),印刷電路板基片介電材料可以分為3類。如表1表示,高損耗材料(如Nelco N4000-6)的損耗正切值超過0.02,介電常數超過4;中等損耗材料(如Isola FR408)的損耗正切值約為0.01,介電常數在3和4之間;低損耗材料(如Duroid 5870)的損耗正切值約為0.001,介電常數低于3。介電衰減與損耗正切和介電常數的平方根成正比,如公式3所示。
 
PAM-4印刷電路板最佳實踐
表1:介電材料種類。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
利用公式1在14GHz頻率和8英寸走線長度條件下進行計算,從結果可見,高、中和低損耗材料的介電衰減分別為12.35dB、4.91dB和0.47dB。之前已經提到,在14GHz頻率、8英寸走線長度條件下,插入損耗低于10dB,應選擇較低損耗的材料,以便為其它通道損耗留出裕量。
 
2.最大限度減少過孔殘樁
 
當使用過孔來連接印刷電路板走線至集成電路時,應使用盲孔或反鉆孔(如圖5所示),以最大限度減少殘樁長度,進而提高1/4波諧振頻率,增加物理層鏈路的帶寬。參考公式4,1/4波諧振頻率與殘樁長度成反比。重新排列公式4和5,對于使用低損耗材料的印刷電路板上的50Gbps(即25GBaud/s)PAM-4傳輸,PAM-4印刷電路板最佳實踐為2.33,最大殘樁長度可以達到大約16mil。
 
PAM-4印刷電路板最佳實踐
圖5:盲孔或反鉆孔。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
3.最大限度減少交流耦合電容器表面貼裝焊盤造成的阻抗失配
 
與印刷電路板走線相比,交流耦合電容器表面貼裝焊盤使用的銅片更寬。例如,0402封裝中的電容器貼裝焊盤寬度為20mil,而0603封裝的焊盤寬度為30mil。圖6顯示了與100Ω差分走線(differential trace)串聯的電容器表面貼裝焊盤的3D模型,從圖中可以看出,沿著這些6mil寬的銅片走線傳播的信號,一旦到達更寬的銅片焊盤(例如0603封裝的30mil寬度),會遇到阻抗不連續性。根據公式6和7,銅片的橫截面積越大,電容就越大,導致傳輸線特征阻抗出現電容不連續性(如下降)。
 
從圖7的時域反射計(TDR)和Sdd21曲線可知,焊盤越寬,阻抗不連續性就越大,這種不連續性會產生更嚴重的信號反射,進而引起更大的插入損耗。0603和0402在14GHz時的衰減分別為1.2dB和0.4dB,至少兩倍于0201(即0.2dB)的情況。因此,設計師應該使用封裝更小的電容器,例如0201(即10mil寬焊盤)來最大限度減小不連續性。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
圖6:使用Keysight EMPro建模電容表面貼裝焊盤與差分走線串聯。
 
PAM-4印刷電路板最佳實踐
圖7:使用Keysight EMPro仿真不同表面貼裝焊盤寬度的TDR和Sdd21與500mil長的印刷電路板走線串聯。
 
4.提供連續參考面
 
當印刷電路板走線跨越2個分離平面之間的間隙時(圖8粗黑線所示),會遇到電感阻抗不連續性或瑕疵參考。這一現象可用公式(6)和(8)分別確定。為了研究瑕疵參考的影響,在EMPro中創建并仿真跨越分離平面的傳輸線3D模型,如圖9所示。微帶差分走線跨越了100mil長和250mil寬的間隙。間隙深度為微帶差分走線與第3層固體面的間距。跨越間隙時,走線與參考底面之間的距離會增加(即電流返回路徑變長),導致電感升高,從而引起間隙的走線阻抗增加。圖10中的TDR和Sdd21曲線證實了非固體參考面對信號完整性的負面影響,跨越分離面會產生更大的電感阻抗不連續性,進而導致更高的插入損耗。因此,確保固體參考面覆蓋整個走線長度路徑十分重要。
 
PAM-4印刷電路板最佳實踐
圖8:印刷電路板俯視圖:信號跨越分離面。
 
PAM-4印刷電路板最佳實踐
 
式中: L = 銅走線的寄生電感(nH); d = 銅走線和參考底面之間的距離(cm); w = 銅走線寬度(cm); t = 銅走線厚度(cm); x = 銅走線長度(cm)。
 
PAM-4印刷電路板最佳實踐
圖9:Keysight EMPro中差分走線跨越分離面的模型。
 
PAM-4印刷電路板最佳實踐
圖10:使用Keysight EMPro仿真、帶固體參考面并跨越分離面的500mil長印刷電路板走線的TDR和Sdd21。
 
5.最大限度減少信號串擾
 
串擾會引起受擾信號出現噪聲感應,從而導致接收集成電路的誤碼增加。因此,帶狀線上使用非交叉布線,因為FEXT相比NEXT更低;而在微帶線上使用交叉布線,因為與FEXT相比NEXT更低。除此之外,差分對間間隔應至少是走線寬度的三倍。
 
6.差分對內偏移
 
印刷電路板走線中的差分對內偏移會帶來更高的插入損耗,從而增加物理層鏈路的誤碼率。由于反相和非反相信號的相位并不是正好相差180度,所以差分模式中的眼高度會變小。圖11中的Sdd21曲線顯示了差分對內偏移對信號完整性的影響,偏移越大,插入損耗越高。因此,每個物理層鏈路的差分對內偏移都應限制在5mil以內,以減少傳輸損耗。可以使用蛇形布線技術來最大限度減少偏移。
 
PAM-4印刷電路板最佳實踐
圖11:使用Keysight ADS仿真、具有不同差分對內偏移的8英寸長印刷電路板走線的Sdd21。
 
7.光纖編織
 
印刷電路板介電基片由編織玻璃纖維與環氧樹脂結合組成。圖12是使用顯微鏡看到的、采用纖維編織樣式106和7628制成的印刷電路板基片的俯視圖。淺棕色粗線是玻璃纖維編織部分,黑色的方塊是環氧樹脂。編號更高的玻璃纖維樣式,如7628,可以實現更密集的玻璃纖維編織。
 
PAM-4印刷電路板最佳實踐
圖12:印刷電路板的介電基片是利用玻璃纖維樣式106和7628編織的纖維織物。
 
玻璃纖維與環氧樹脂的介電屬性截然不同。例如,NE玻璃纖維的介電常數(Dk)和損耗正切(Df)分別為4.4和0.0006,E玻璃纖維的Dk和Df分別為6.6和0.0012。而環氧樹脂的Dk為3.2,遠遠低于玻璃纖維的對應值。當使用較為稀疏的纖維編織做基片時,印刷電路板走線能夠更頻繁地穿過樹脂和玻璃纖維的不同區域。結果就是,信號沿著走線從發送端傳輸到接收端,其速度或傳播時延經常會發生變化。它們之間的關系可以通過公式9來說明。
 
PAM-4印刷電路板最佳實踐
 
式中: V = 信號在印刷電路板上的速度(英寸/ns); C = 光速(約12英寸/ns);PAM-4印刷電路板最佳實踐 = 介電常數。
 
這種情況為50Gbps信號傳輸帶來了巨大挑戰。例如,在最壞情況下,非反相信號走線可能穿過玻璃纖維但沒有穿過環氧樹脂,而反相信號的走線可能穿過很多樹脂區域。結果,由于反相信號遇到不斷變化的傳播時延,非反相信號與反相信號之間的相位差在接收端一般會遠遠小于180o。上升沿和下降沿之間的大偏移或錯位,導致眼圖寬度和高度減少。而且,接收端會出現高誤碼率。因此,解決辦法就是采用更密集的纖維編織。
 
布局后的通道仿真
 
一旦按照上述關鍵實踐完成了印刷電路板布局設計,布局文件將導入Keysight EMPro進行3DEM仿真。選擇圖13中突出顯示的8英寸長差分走線進行s參數抽取,將其導入Keysight ADS進行布局后PAM-4通道仿真。圖14中的插入損耗曲線顯示提取的差分走線符合規定的閾值,即在14GHz時低于10dB,在28GHz時低于20dB。
 
PAM-4印刷電路板最佳實踐
圖13:選擇差分走線用于3DEM仿真。
 
PAM-4印刷電路板最佳實踐
圖14:印刷電路板上所選PAM-4差分走線的插入損耗曲線。
 
圖15顯示了使用Keysight ADS生成的通道分析拓撲,兩個25GBaud/s的PAM-2信號注入壓控電壓源以生成PAM-4信號。PAM-4波形的傳播路徑為:發射端封裝、8英寸PCB走線(即圖13中顯示的傳輸線)、接收端封裝,最后是接收端。在發射端,信號幅度和上升/下降時間分別為1.2Vpp和16ps。PAM-4信號的最小眼寬和眼高分別為1/4單位間隔(即25GBaud/s數據速率下為10ps)和50mV。如圖16所示,PAM-4眼圖有4個數字幅度電平,因此有3個眼圖。在啟用決策反饋均衡(DFE)前,接收端信號的眼高和眼寬分別為60mV和14ps。一旦啟用接收端的6接頭DFE,眼圖幾乎變大一倍(即140mV眼高和23ps眼寬)。結果符合指南中的技術指標。均衡方案的選擇和接頭的調節很大程度上取決于通道的插入損耗或頻率響應。我們進行了多次嘗試來獲得更好的開眼結果。
 
PAM-4印刷電路板最佳實踐
圖15:使用Keysight ADS在25GBaud/s下進行布局后PAM-4通道仿真。
 
PAM-4印刷電路板最佳實踐
圖16:從圖15中的通道仿真結果得到的接收端眼圖。
 
結論
 
工程師在設計印刷電路板PAM-4物理層通道時,應謹慎借鑒本文討論的所有關鍵實踐。實施50Gbps PAM-4物理層鏈路時必須嚴格要求,確保在高速收發器之間實現穩定的通信。
 
作者:Chang Fei Yee,Keysight公司
 
本文轉載自《電子技術設計》。
 
 
 
 
 
 
推薦閱讀:


大多數IoT設備最初的EMI測試都失敗了
FLIR紅外熱像儀支持燃料電池技術研究
毫米波雷達PK激光雷達,各自短版如何彌補?
實施安全可靠的汽車應用FPGA解決方案
四個要點,幫你搞定LoRa天線匹配電路
 
 
 
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

主站蜘蛛池模板: 综合在线 亚洲 成人 欧美 | 精品免费国产一区二区三区四区介绍 | youjizz中国丰满少妇 | 最近中文字幕2019在线一区 | 一区二区三区欧美精品 | 中文字幕一区在线观看视频 | 国产粗话肉麻对白在线播放 | 久久婷婷亚洲 | 漂亮人妻去按摩被按中出 | 婷婷色香五月综合缴缴情香蕉 | 中文字幕aav | 午夜激情在线观看 | 四虎精品免费永久免费视频 | 精品久久久久久无码国产 | 欧美aaa级 | 亚洲乱码在线卡一卡二卡新区豆瓣 | 麻豆区1免费 | 亚洲色成人www永久在线观看 | 国产69精品久久久久观看软件 | 亚洲爆乳精品无码一区二区 | 黑色丝袜无码中中文字幕 | 少妇裸体婬交视频免费看 | 国产成人精品一、二区 | www.日 | 女人内谢aaaa免费视频 | 天天碰免费上传视频 | 我的好妈妈在线观看 | 国产激情久久 | 久热国产视频 | 久久99网 | 91国偷自产一区二区三区水蜜桃 | 免费a在线 | 国产成人无码av | 精品人妻无码一区二区三区9 | 国产亚洲美女精品久久久 | 青青操91 | 亚洲色图五月天 | 我的邻居在线观看 | 日本中文字幕一区二区 | 男人天堂一区 | 业余 自由 性别 成熟视频 视频 | 日本视频网站在线观看 | 内射中出日韩无国产剧情 | 在线免费观看黄色av | 人妻在厨房被色诱 中文字幕 | 欧美成人午夜性视频 | 99视频国产精品免费观看 | 5999在线视频免费观看 | 欧美成人精品三级在线观看 | 久久综合亚洲色一区二区三区 | 香蕉视频亚洲 | 天天综合91 | 亚洲自拍偷拍视频 | 成人亚洲综合 | 精品久久久久久无码不卡 | 他揉捏她两乳不停呻吟微博 | 久草在线视频在线 | 张柏芝54张无删码艳照在线播放 | www伊人| 欧美成人不卡 | 在线观看视频中文字幕 | 91丨国产丨香蕉|入口 | 亚洲欧美综合一区 | 软萌小仙自慰喷白浆 | 九九在线 | 亚洲 欧美 激情 另类 校园 | 亚洲欧美v | 国产麻豆精品av在线观看 | 人妻熟女一区二区aⅴ水野朝阳 | 无码成人免费全部观看 | 久久av无码αv高潮αv喷吹 | 国产成人亚洲综合网站小说 | 久久久久免费看成人影片 | 在线国产一区二区 | 日韩精品免费播放 | 天堂少妇 | 2019最新中文字幕在线观看 | 蜜桃精品视频 | 久久久亚洲精品一区二区三区浴池 | 欧美 亚洲 另类 制服 自拍 | 色欲av亚洲一区无码少妇 | 亚洲深夜福利 | 菲律宾av| 最新精品香蕉在线 | 精品久久久久久中文字幕人妻最新 | 岛国在线无码高清视频 | 日日躁夜夜躁狠狠躁aⅴ蜜 肉丝美脚视频一区二区 | 人妻av综合天堂一区 | 日韩精品综合 | 国产精品成人在线 | 成年人视频在线免费看 | 狠狠躁夜夜躁人人爽超碰91 | 狼群社区视频www国语 | 国产高清一区 | 一区二区免费高清观看国产丝瓜 | 伊人久艹 | play在线海量a v视频播放 | 丝袜一区在线观看 | 日韩字幕在线观看 |