亚洲美女爱爱-夜夜添夜夜添夜夜摸夜夜摸-97碰成人国产免费公开视频-国产午夜大片-www黄av-国产94在线 | 亚洲-亚洲午夜久久久精品一区二区三剧-精品视频亚洲-久久久久国色av∨免费看-黄色片一区二区-69福利视频-国产老头和老头xxxxx免费-99精品视频一区在线观看-日韩三级黄色毛片-亚洲激情图片区-黄色a一级-99re6在线-91九色视频-日本欧美久久久-成人国产精品免费观看

你的位置:首頁 > 電源管理 > 正文

創新的隔離式ADC架構支持利用分流電阻進行三相電能計量

發布時間:2020-08-11 來源:Petre Minciunescu 責任編輯:wenwei

【導讀】傳統三相電表使用電流互感器(CT)檢測相電流和零線電流。CT的優勢之一是能夠在數百伏的電力線與電表地(通常連接到零線)之間提供固有的電隔離。CT可以實現良好的線性度;通過調整匝數比和負載電阻,可以靈活地測量各種類型的電流。

然而,CT用于電表時也有一些缺點。首先,外部直流磁場可能會使CT的磁芯飽和。現在,非常強大的稀土直流磁體很容易為普通民眾所獲得并應用于竊電。其次,電源電子設備也能使CT飽和,例如用于分布式太陽能發電的直連逆變器,它在線路上產生直流電流。制造商可以通過屏蔽和使用直流兼容CT來克服這兩種影響,但這會增加成本。有人說,無論是何種CT,都可以找到一個永磁體來干擾它。第三,CT會引入一個與線電流頻率相關的測量相位延遲。如果應用僅關注線電流的基波成分,那么補償此延遲相對容易。然而,測量諧波成分日益變得重要,而要補償基波和所有諧波的總延遲則非常困難。
 
其它電流傳感器在三相電表應用中使用較少,包括羅氏線圈等di/dt傳感器或霍爾效應傳感器。雖然這些傳感器在某些應用中具有優勢,但也存在特殊的困難。例如,羅氏線圈具有出色的線性度,可以檢測非常高的電流,但難以制造,而且難以實現良好的抗擾度,不適合精確的低電流測量。在防竊電方面,羅氏線圈也容易受交流磁場干擾。霍爾效應傳感器要求對溫度失調進行主動補償,而且本身很容易受磁場影響。
 
分流電阻與三相電能計量
 
近年來,在成本、磁場抗擾度和尺寸等因素的推動下,分流電阻在單相電表中的使用迅速增加。許多情況下,單相電表以線電壓為基準,因而無需額外的隔離。在三相電表中,必須在各分流電阻與電表內核之間提供一個隔離柵,這是嚴重的挑戰。熱量也是一個問題,迫使分流電阻一般只能用于最大電流不超過120 A的電表。我們先考慮一個三相系統的A相及其負載。假設利用分流電阻來檢測相電流(圖1)。
 
我們先考慮一個三相系統的A相及其負載。假設利用分流電阻來檢測相電流(圖1)。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖1. 利用分流電阻檢測相電流時的A相電流和電壓檢測
 
這恰好是一個單相電表配置:分流電阻位于電力線上,一個分壓器檢測相至零線電壓。分流電阻和分壓器上的電壓由一個模數轉換器(ADC)檢測。地為分流電阻與分壓器共用的極點。單相電表大部分用于住宅,其最大電流一般低于120 A。這一限制加上低成本要求,使得分流電阻成為單相電能計量中使用最廣泛的電流傳感器。
 
所有三相都復制這一方案,各ADC有其自己的地(圖2)。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖2. 利用分流電阻檢測相電流時的三相電流和電壓檢測
 
管理所有活動的微控制器(MCU)與零線處于相同的電位,為了在ADC與MCU之間進行通信,必須隔離數據通道。這樣,每個ADC都有其自己的隔離電源(圖3)。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖3. 具有分流電阻、獨立電源和隔離通信的三相電表
 
這種電表架構已在使用:雙通道ADC利用光耦合器或芯片級變壓器,跨越隔離柵將信息串行傳輸到MCU。隔離電源利用獨立器件或采用芯片級變壓器的隔離DC-DC轉換器來構建。
 
理想情況下,所有相電流和電壓都應同步采樣,以便利用瞬時值進行全面的三相分析。但是,各相的ADC讀數完全獨立,因為不存在ADC同步。這是這種架構的第一個局限。使用電流互感器或羅氏線圈的電表則不存在這種問題,因為它們可以使用一個計量模擬前端(AFE)來同時讀取所有相電流和電壓。
 
這種架構的另一個問題是高器件數:一個MCU、三個ADC、三個多通道數據隔離器以及四個電源。使用CT的電表不存在這個問題,因為電路板通常具有一個MCU、一個計量AFE和一個電源。
 
那么,如何構建一款具有分流電阻的優勢,器件數對于這種架構而言最少(即一個MCU、一個電源和三個ADC),并且能對所有相電流和電壓同步采樣的電表呢?
 
隔離式ADC架構
 
答案是構建一種集成至少兩個ADC、一個隔離式DC-DC轉換器和數據隔離器,并能使屬于不同芯片的ADC同步采樣數據的芯片(圖4)。MCU的電源VDD也為此芯片供電。采用芯片級變壓器技術的隔離式DC-DC轉換器為ADC的第一級提供隔離電源。一個ADC檢測分流電阻上的電壓,另一個ADC利用分壓器檢測相至零線電壓。由分流電阻極點之一所確定的地就是芯片隔離側的地。ADC為sigma-delta型,僅第一級放在芯片的隔離側。第一級輸出的位流經過芯片級變壓器,后者是隔離數據通信通道的一部分。芯片的非隔離側收到位流,濾波后將其變為24位字,然后通過SPI串行端口提供給外部。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖4. 新型ADC架構包括雙通道ADC、數據隔離和一個隔離式DC-DC轉換器
 
芯片級變壓器技術對這種新型ADC架構的貢獻最大。與光耦合器相比,ADI公司獲得專利的iCoupler®數字隔離器更可靠、尺寸更小、功耗更低、通信速度更快、時序精度更佳。但這還不夠。隔離式sigma-delta調制器上 市已久,采用光耦合器或芯片級變壓器。芯片級變壓器技術的最重要貢獻是伴隨isoPower®隔離式DC-DC轉換器,它可以與ADC、數字模塊、隔離數據通道一同集成到一個表貼薄型封裝中。
 
芯片級變壓器的核心是空氣,因此iCoupler數字隔離器和isoPower隔離式DC-DC轉換器根本不受永磁體的影響,使得電表這一側完全不受直流磁場干擾。這種變壓器對交流磁場同樣具有高抗擾度。線圈面積非常小,要影響isoPower線圈運行,必須產生一個10 kHz、2.8 T的磁場。換言之,為了影響芯片級變壓器的行為,必須讓69 kA的10 kHz電流通過一根導線,并讓該導線與芯片相隔5 mm。
 
信息利用極高頻PWM脈沖傳輸到隔離柵另一側。由此產生的高頻電流會在電路板中傳播,引起邊沿和偶極子輻射。隔離式DC-DC轉換器的負載僅由sigma-delta ADC的第一級構成,其幅度是已知的。因此,線圈是針對已知負載進行設計,從而可以降低一般與DC-DC轉換器相關的輻射,并且無需四層電路板。使用這種架構的IC時,電表制造商可以使用兩層電路板,并通過所需的CISPR 22 Class B標準。
 
為使與MCU的接口盡可能簡單,芯片的數字模塊對來自第一級的位流進行濾波,并通過簡單的從機SPI串行端口提供24位ADC輸出。電表每一相都有一個隔離式ADC,因此獲得一致ADC輸出的挑戰仍未解決。如果采用同一時鐘工作,則所有相上的ADC第一級可以在同一時刻采樣。如果圖4中的CLKIN信號產生自MCU,則這很容易實現。另一個方案是使用一個晶振為一個芯片產生時鐘,然后利用緩沖CLKOUT信號為所有其它隔離式ADC提供時鐘。控制所有隔離式ADC以在同一時刻產生ADC輸出。現在,電表就能利用分流電阻檢測電流,執行精確、全面的三相分析。
 
圖5顯示一款采用三個隔離式ADC的三相電表。該電表僅有一個電源為MCU和隔離式ADC供電。MCU利用SPI接口從各IC讀取ADC輸出。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖5. 采用新型隔離式ADC的三相電表
 
上面的說明假設利用外部MCU執行計量計算。對于希望解決方案包括計量計算的電表制造商, 可以將隔離式ADC耦合到一個IC以執行所有計量計算,如圖6所示。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖6. 采用新型隔離式ADC和計量IC的三相電表
 
基于此架構的新產品
 
此架構已被ADI公司的一系列新產品采用:ADE7913、ADE7912、ADE7933和ADE7932。圖7顯示了ADE7913的框圖。它與圖4非常相似,但有一個額外ADC通道用于檢測與溫度傳感器復用的輔助電壓。該輔助電壓可以是斷路器上的電壓,溫度傳感器可用于校正分流電阻的溫度變化。ADE7912是一個變體,無輔助電壓測量功能,但有溫度傳感器。
 
創新的隔離式ADC架構支持利用分流電阻進行三相電能計量
圖7. 基于此架構的新型ADE7913隔離式ADC
 
ADE7933和ADE7932將SPI接口替換為位流接口,其余特性分別與ADE7913和ADE7912相同。它們就是圖6所示的隔離式ADC。圖中的計量IC已通過ADE7978實現。
 
結束語
 
本文說明了一種新型隔離式ADC架構。它包含一個isoPower隔離式DC-DC轉換器,利用MCU電源為隔離柵另一側的多通道sigma delta ADC第一級供電。ADC輸出的位流經過iCoupler數據隔離器,由數字模塊接收。此模塊對其進行濾波,產生24位ADC輸出,可利用簡單的SPI接口讀取。一個ADC可以測量經過一個分流電阻的電流,第二個ADC可以利用分壓器測量相至零線電壓,第三個ADC可以測量輔助電壓或溫度傳感器。它支持三相電表使用分流電阻,確保完全不受直流和交流磁場干擾,執行電流檢測時不會產生任何相移,同時可降低系統總成本。小尺寸解決方案確保電路板非常小,只需安裝非常少的器件。集成式isoPower芯片級變壓器針對已知ADC負載而設計,輻射降至最低,并通過測試,利用兩層電路板即可達到CISPR 22 Class B標準。
 
當然,使用分流電阻的電流檢測并不局限于電能計量應用,電能質量監控、太陽能逆變器、過程監控和保護設備均可受益于這種新型ADC架構。
 
 
推薦閱讀:
 
艾邁斯為midge medical提供傳感器技術,用于開發COVID-19快速檢測設備
東芝與MikroElektronika展開合作,為電機驅動IC開發評估板
新一代智能氣體檢測方案
能量收集領域電解電容器和超級電容器的最新進展
超低功耗開啟高速隔離應用之門
要采購變壓器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

主站蜘蛛池模板: 日本白嫩少妇hdtube | 激情欧美一区二区三区 | 国产人妻鲁鲁一区二区 | 欧美黄色小说视频 | 亚洲色成人四虎在线观看 | 亚洲精品国产精品国自产在线 | h毛片| 爆操欧美美女 | 91色噜噜| 免费观看黄色一级片 | 在线观看肉片av网站免费 | 欧美日韩国产二区 | 国产精品国产亚洲精品看不卡15 | 一本之道ay免费 | 成人av片无码免费网站 | 99精品国产高清一区二区 | 亚洲人成网站在线观看播放 | 蜜臀久久99精品久久久久久做爰 | 欧美一区二区鲁丝袜片 | 国产色视频网站免费 | 99精品免费久久久久久久久日本 | 亚洲国产成人一区二区精品区 | 色综合色欲色综合色综合色乛 | 欧美另类人妖 | 999国产精品亚洲77777 | 秋霞电影网午夜鲁丝片无码 | 欧洲丰满少妇做爰视频爽爽 | 两个人日本www免费版 | 一二三区中文字幕 | 久久久久久久久久久久久久久久久 | 成人精品视频一区二区 | 日韩中文字幕一区二区三区 | 色播影院性播影院私人影院 | 无码精品a∨在线观看十八禁 | 国产如狼似虎富婆找强壮黑人 | 一级特级毛片 | 欧美成人性生活视频 | 男女久久久国产一区二区三区 | 亚洲国产成人精品无码区在线网站 | 成人在线视屏 | 免费看国产一级片 | 孕妇特级毛片ww无码内射 | 女性高爱潮有声视频 | 奇米影视7777狠狠狠狠色 | 久久精品人人做人人爽播放器 | 久久久久人妻一区精品 | 国产精品女同久久久久电影院 | 久久一区亚洲 | 18中国性生交xxxxxhd | www.夜夜爽 | 西西人体做爰大胆gogo | 精品人妻va出轨中文字幕 | 国产亚洲综合欧美一区二区 | 午夜成人性刺激免费视频在线观看 | 青青青青青手机视频在线观看视频 | 1区2区3区4区产品不卡码网站 | 日韩欧美亚洲综合久久 | 欧美日韩视频在线第一区 | 好紧好爽再进去一点在线视频 | 亚洲黄色免费观看 | 免费成人激情视频 | 国产精品成人一区二区 | 草草影院欧美 | 水蜜桃av无码一区二区 | 国产永久免费无遮挡 | 免费一区二区三区四区 | 99情趣网| 3344国产精品免费看 | 激情久久久久久久 | 国产成人一区二区青青草原 | 夜夜添无码一区二区三区 | 在线网站av | 成人免费大片在线观看 | 日本高清色倩视频在线观看 | 国产女主播一区二区 | 狼性av| 好吊妞视频988gao在线播放 | 免费无码成人av电影在线播放 | 精品国产一区二区三区久久狼5月 | 亚洲中文字幕久久精品无码2021 | 99久久免费精品国产72精品九九 | 日韩人妻无码免费视频一二区 | 欧美肥妇多毛bbw | 国产爽爽久久影院hd | 91国精产品新 | 久热精品在线观看 | 久久成人免费网 | 国产偷伦视频 | 四虎国产精品永久在线下载 | 久久久久久久久久久网 | 亚洲精品少妇 | 中文字幕国内自拍 | 337p日本欧洲亚洲大胆艺术图 | 欧美乱淫 | 久久久久无码国产精品不卡 | 777米奇色狠狠俺去啦777 | 国内精品久久久久国产盗摄 | 亚洲人成电影在线播放 | 久久婷婷五月综合中文字幕 |